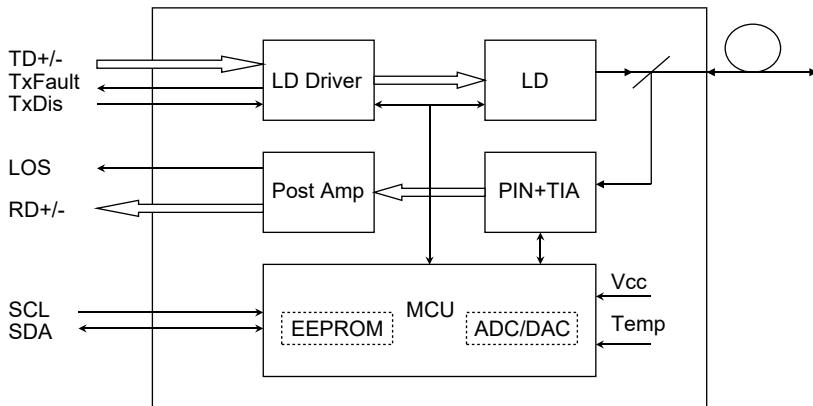


SFP Module

GMT-SF10SAB

- Dual data-rate of 1.25Gbps/1.063Gbps operation
- Compatible with RoHS
- +3.3V single power supply
- Compatible with SONET OC-24-LR-1


Product Features

- 1310nm FP laser and PIN photodetector for 3km transmission
- Compliant with SFP MSA and SFF-8472 with simplex SC receptacle
- Digital Diagnostic Monitoring: Internal Calibration or External Calibration
- Operating case temperature range of 0°C to +70°C (Commercial)

Ports Description

Module Block Diagram

Application

- Gigabit Ethernet
- Fiber Channel
- Switch to Switch interface
- Router/Server interface
- Switched backplane applications
- Other optical transmission systems

Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit
Supply Voltage	Vcc	-0.5	4.5	V
Storage Temperature	TS	-40	+85	°C
Operating Humidity	-	5	85	%

Recommended Operating Conditions

Parameter	Symbol	Min	Typical	Max	Unit
Operating Case Temperature	Tc	0		+70	°C
		-40		+85	°C
Power Supply Voltage	Vcc	3.13	3.3	3.47	V
Power Supply Current	Icc			300	mA
Data Rate	Gigabit Ethernet			1.25	
	Fiber Channel			1.063	Gbps

Optical and Electrical Characteristics

Parameter	Symbol	Min	Typical	Max	Unit	Notes
Transmitter						
Centre Wavelength	λ_c	1260	1310	1360	nm	
Spectral Width (RMS)	σ			4	nm	
Average Output Power	Pout	-10		-4	dBm	1
Extinction Ratio	ER	9			dB	
Optical Rise/Fall Time (20%~80%)	t_r/t_f			0.26	ns	

Data Input Swing Differential		V_{IN}	400		1800	mV	2
Input Differential Impedance		Z_{IN}	90	100	110	Ω	
TX Disable	Disable		2.0		Vcc	V	
	Enable		0		0.8	V	
TX Fault	Fault		2.0		Vcc	V	
	Normal		0		0.8	V	
Receiver							
Centre Wavelength		λ_c	1530		1570	nm	
Receiver Sensitivity					-22	dBm	3
Receiver Overload			-3			dBm	3
LOS De-Assert		LOS_D			-23	dBm	
LOS Assert		LOS_A	-35			dBm	
LOS Hysteresis			1		4	dB	
Data Output Swing Differential		V_{out}	400		1800	mV	4
LOS	High		2.0		Vcc	V	
	Low				0.8	V	

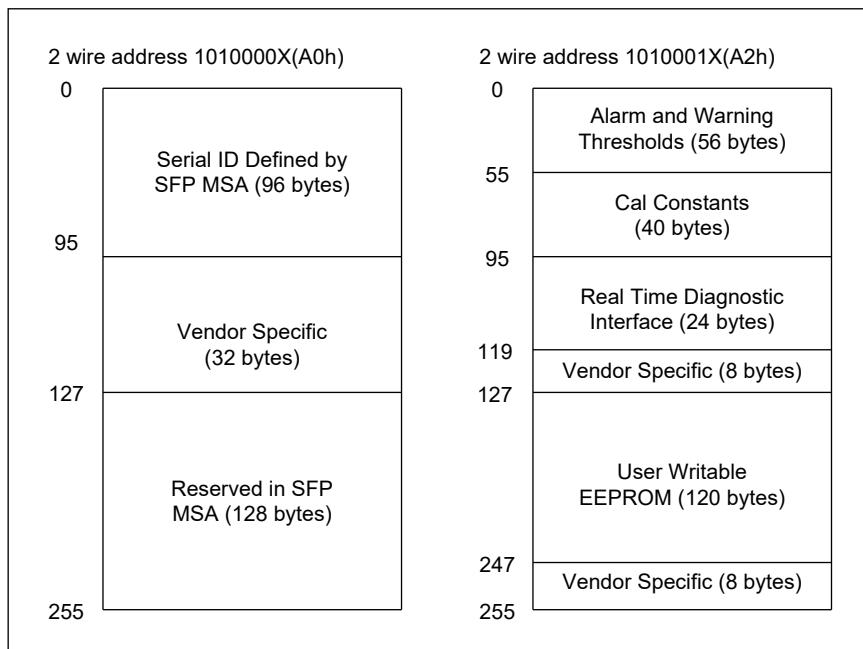
Notes:

- 1) The optical power is launched into SMF.
- 2) PECL input, internally AC-coupled and terminated.
- 3) Measured with a PRBS 2⁷-1 test pattern @1250Mbps, BER $\leq 1 \times 10^{-12}$.
- 4) Internally AC-coupled.

Timing and Electrical

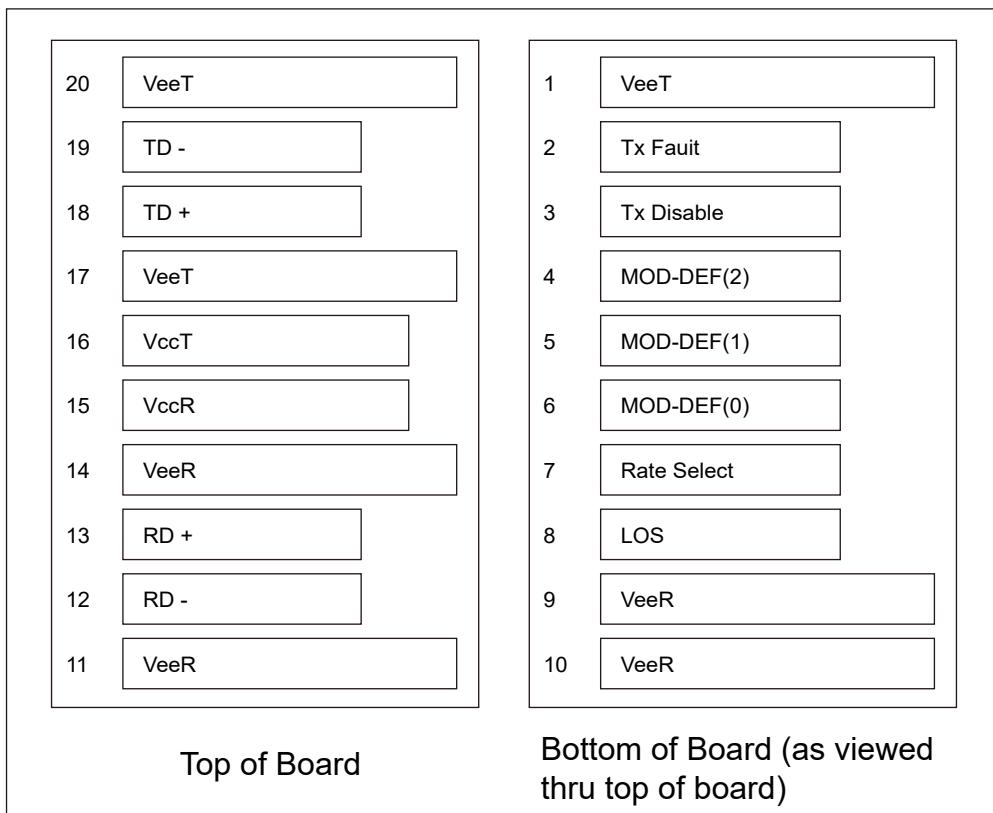
Parameter	Symbol	Min	Typical	Max	Unit
Tx Disable Negate Time	t_{on}			1	ms
Tx Disable Assert Time	t_{off}			10	μs
Time To Initialize, including Reset of Tx Fault	t_{init}			300	ms
Tx Fault Assert Time	t_{fault}			100	μs
Tx Disable To Reset	t_{reset}	10			μs
LOS Assert Time	t_{loss_on}			100	μs
LOS De-assert Time	t_{loss_off}			100	μs
Serial ID Clock Rate	f_{serial_clock}			400	KHz
MOD_DEF (0:2)-High	V_H	2		Vcc	V
MOD_DEF (0:2)-Low	V_L			0.8	V

Diagnostics Specification


Parameter	Range	Unit	Accuracy	Calibration
Temperature	0 to +70	$^{\circ}C$	$\pm 3^{\circ}C$	Internal / External
	-40 to +85			
Voltage	3.0 to 3.6	V	$\pm 3\%$	Internal / External
Bias Current	0 to 100	mA	$\pm 10\%$	Internal / External
TX Power	-10 to -4	dBm	$\pm 3\text{dB}$	Internal / External
RX Power	-30 to -8	dBm	$\pm 3\text{dB}$	Internal / External

Digital Diagnostic Memory Map

The transceivers provide serial ID memory contents and diagnostic information about the present operating conditions by the 2-wire serial interface (SCL, SDA).


The diagnostic information with internal calibration or external calibration all are implemented, including received power monitoring, transmitted power monitoring, bias current monitoring, supply voltage monitoring and temperature monitoring.

The digital diagnostic memory map specific data field defines as following.

Pin Definitions

Pin Diagram

Pin Descriptions

Pin	Signal Name	Description	Plug Seq.	Notes
1	V_{EET}	Transmitter Ground	1	
2	TX FAULT	Transmitter Fault Indication	3	Note 1
3	TX DISABLE	Transmitter Disable	3	Note 2
4	MOD_DEF(2)	SDA Serial Data Signal	3	Note 3
5	MOD_DEF(1)	SCL Serial Clock Signal	3	Note 3
6	MOD_DEF(0)	TTL Low	3	Note 3
7	Rate Select	Not Connected	3	
8	LOS	Loss of Signal	3	Note 4
9	V_{EER}	Receiver ground	1	
10	V_{EER}	Receiver ground	1	
11	V_{EER}	Receiver ground	1	
12	RD-	Inv. Received Data Out	3	Note 5
13	RD+	Received Data Out	3	Note 5
14	V_{EER}	Receiver ground	1	
15	V_{CCR}	Receiver Power Supply	2	
16	V_{CCT}	Transmitter Power Supply	2	
17	V_{EET}	Transmitter Ground	1	
18	TD+	Transmit Data In	3	Note 6
19	TD-	Inv. Transmit Data In	3	Note 6
20	V_{EET}	Transmitter Ground	1	

Notes:

Plug Seq.: Pin engagement sequence during hot plugging.

1) TX Fault is an open collector output, which should be pulled up with a $4.7k\sim10k\Omega$ resistor on the host board to a voltage between 2.0V and $V_{CC}+0.3V$. Logic 0 indicates normal operation; Logic 1 indicates a laser fault of some kind. In the low state, the output will be pulled to less than 0.8V.

2) TX Disable is an input that is used to shut down the transmitter optical output. It is pulled up within the module with a $4.7k\sim10k\Omega$ resistor.

Its states are:

Low (0 to 0.8V): Transmitter on

(>0.8V, < 2.0V): Undefined

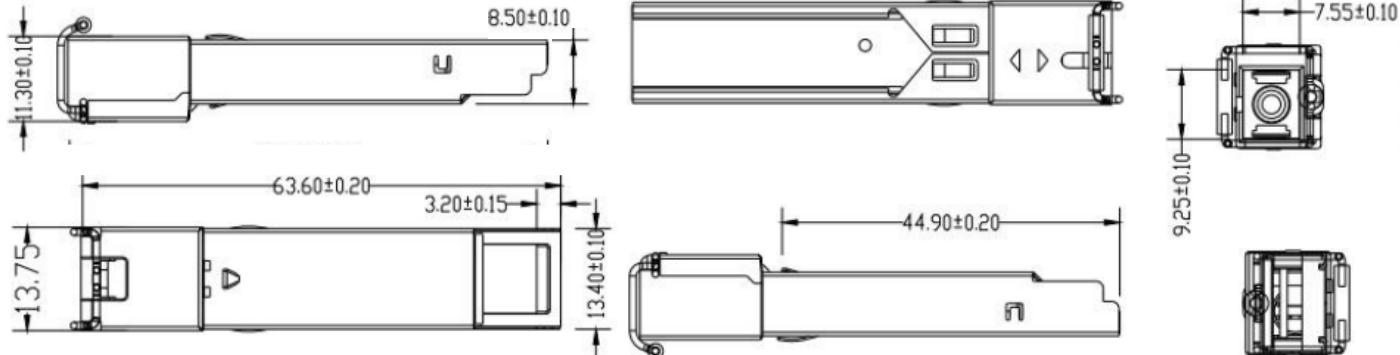
High (2.0 to 3.465V): Transmitter Disabled

Open: Transmitter Disabled

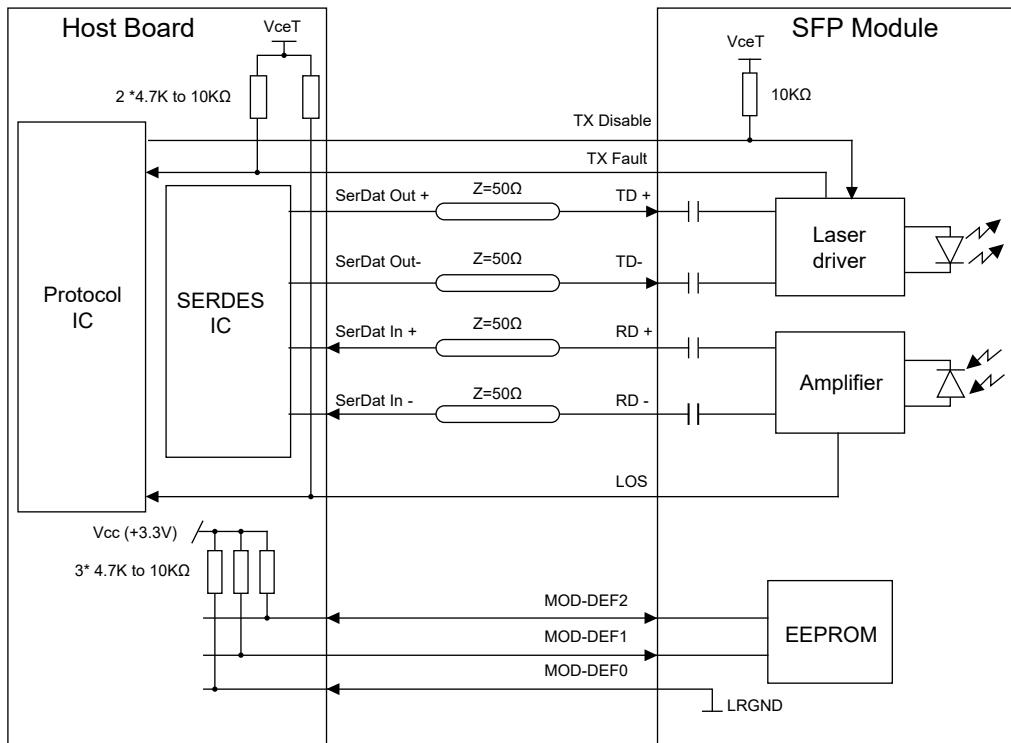
3) Mod-Def 0,1,2. These are the module definition pins. They should be pulled up with a $4.7k\sim10k\Omega$ resistor on the host board. The pull-up voltage shall be V_{CCT} or V_{CCR} .

Mod-Def 0 is grounded by the module to indicate that the module is present

Mod-Def 1 is the clock line of two wire serial interface for serial ID


Mod-Def 2 is the data line of two wire serial interface for serial ID

4) LOS is an open collector output, which should be pulled up with a $4.7k\sim10k\Omega$ resistor. Pull up voltage between 2.0V and $V_{CC}+0.3V$. Logic 1 indicates loss of signal; Logic 0 indicates normal operation. In the low state, the output will be pulled to less than 0.8V.


5) RD-/+: These are the differential receiver outputs. They are internally AC-coupled 100 differential lines which should be terminated with 100Ω (differential) at the user SERDES.

6) TD-/+: These are the differential transmitter inputs. They are internally AC-coupled, differential lines with 100Ω differential termination inside the module.

Mechanical Specifications

Recommended Interface Circuit

Regulatory Compliance

GN-T-SF10SAB transceiver is designed to be Class I Laser safety compliant and is certified per the following standards:

Feature	Agency	Standard	Certificate / Comments
Laser Safety	FDA	CDRH 21 CFR 1040 and Laser Notice No. 50	1120289-000
Product Safety	BST	EN 60825-1: 2007	BT0905142009
		EN 60825-2: 2004	
		EN 60950-1: 2006	
Environmental protection	SGS	RoHS Directive 2002/95/EC	GZ0902008347/CHEM
EMC	WALTEK	EN 55022:2006+A1: 2007	WT10093768-D-E-E
		EN 55024:1998+A1+A2: 2003	

Ordering information

Part Number	Product Description
GN-T-SF10SAB	1310nm, 1.25Gbps, SC, 3km, 0°C~+70°C, With Digital Diagnostic Monitoring

References

- 1) Small Form Factor Pluggable (SFP) Transceiver Multi-Source Agreement (MSA), September 2000
- 2) Telcordia GR-253 and ITU-T G.957 Specifications.

Important Notice

- 1) Performance figures, data and any illustrative material provided in this data sheet are typical and must be specifically confirmed in writing before they become applicable to any particular order or contract. In accordance with the policy of continuous improvement specifications may change without notice.
- 2) The publication of information in this data sheet does not imply freedom from patent or other protective rights of or others. Further details are available from any sales representative.