

## GNT-SF22LAB

10Gb/s SFP+ BIDI 20km DDM Transceiver

### 1. PRODUCT FEATURES

- \*Support data rate up to 11.3Gb/s
- \*Hot-Pluggable SFP Footprint and Single LC Connector
- \*Up to 20km reach for G.652 SMF
- \*1270nm DFB Transmitter and 1330 PIN receiver for EB23X-20D(I)
- \*1330nm DFB Transmitter and 1270 PIN receiver for EB32X-20D(I)
- \*Temperature Range: Commercial:0°C ~70°C Industrial: -40°C ~85°C
- \*Power consumption <1W
- \*Compliant with SFP-8431
- \*Compliant with SFP-8432
- \*Compliant with SFP-8472
- \*Compliant with IEEE802.3ae
- \*RoHS 6 compliance
- \*Complies with EU Directive 2015/863/E

### 2. APPLICATIONS

- \*10GBASE-LR at 10.3125Gbps
- \*10GBASE-LW at 9.953Gbps
- \*Other Optical Links



### 3. DESCRIPTIONS

The GNT-SF22LAB series single mode transceiver is small form factor pluggable module for duplex optical data communications such as 10GBASE-LR/LW defined by IEEE 802.3ae. It is with the SFP+ 20-pin connector to allow hot plug capability.

The GNT-SF22LAB module is designed for single mode fiber and operates at a nominal wavelength of 1270nm or 1330nm; the transmitter section uses a multiple quantum well DFB, which is class 1 laser compliant according to International Safety Standard IEC-60825.

The receiver section uses an integrated InGaAs detector preamplifier (IDP) mounted in an optical header and a limiting post-amplifier IC.

## 4. Module Block Diagram



## 5. Absolute Maximum Ratings

| Parameter                               | Symbol    | Min. | Typical | Max. | Unit | Notes |
|-----------------------------------------|-----------|------|---------|------|------|-------|
| Storage Temperature                     | $T_{stg}$ | -40  |         | +85  | °C   |       |
| Case Operating Temperature(Commercial)  | $T_o$     | 0    |         | 70   | °C   |       |
| Case Operating Temperature (Industrial) | $T_o$     | -40  |         | 85   | °C   |       |
| Relative Humidity - Storage             | $R_{HS}$  | 5    |         | 95   | %    |       |
| Relative Humidity - Operating           | $R_{HO}$  | 5    |         | 85   | %    |       |
| DC Supply Voltage                       | $V_{CC}$  | 0    |         | 3.6  | V    |       |

## 6. Recommended Operating Conditions

| Parameter                  | Symbol   | Min. | Typical | Max. | Unit | Notes      |
|----------------------------|----------|------|---------|------|------|------------|
| Case Operating Temperature | $T_{op}$ | 0    | -       | 70   | °C   | Commercial |
|                            |          | -40  |         | 85   |      | Industrial |
| Power Supply Voltage       | $V_{CC}$ | 3.13 | 3.3     | 3.47 | V    |            |
| Supply Current             | $I_{CC}$ |      |         | 300  | mA   |            |
| Data Rate                  |          |      | 10.3125 |      | Gb/s |            |
| Transmission Distance      | TD       | -    | -       | 20   | km   | Over SMF   |

## 7. Electrical Characteristics

High-Speed Signal: Compliant to CEI-11G-SR; Low-Speed Signal: Compliant to SFF-8431

| Parameter                                    | Symbol           | Min.     | Typical | Max.  | Unit         | Notes |
|----------------------------------------------|------------------|----------|---------|-------|--------------|-------|
| Supply Voltage                               | $V_{CC}$         | 3.135    |         | 3.465 | V            |       |
| Supply Current                               | $I_{CC}$         |          |         | 300   | mA           |       |
| Power Consumption                            | P                |          |         | 1.0   | W            |       |
| <b>Transmitter (Module Input)</b>            |                  |          |         |       |              |       |
| Differential Input Resistance                | $R_{R_{din}}$    | 80       | 100     | 120   | $\Omega$     |       |
| Input Differential Voltage                   | $R_{V_{diff}}$   | 110      | -       | 1050  | mV/pp        |       |
| Tx_Disable                                   | Normal Operation | $V_{IL}$ | -0.3    | -     | 0.8          | V     |
|                                              | Laser Disable    | $V_{IH}$ | 2.0     | -     | $V_{CC}+0.3$ | V     |
| <b>Receiver (Module Output)</b>              |                  |          |         |       |              |       |
| Differential Resistance                      | $T_{R_d}$        | 80       | 100     | 120   | Ohm          |       |
| Output Differential Voltage                  | $T_{V_{diff}}$   | 360      | -       | 770   | mV/pp        |       |
| Differential Termination Resistance Mismatch | $T_{R_{dm}}$     | -        | -       | 5     | %            |       |
| Rx los                                       | Normal Operation | $V_{OL}$ | -0.3    | -     | 0.4          | V     |
|                                              | Loss Signal      | $V_{OH}$ | 2       |       | VCCHOST      | V     |

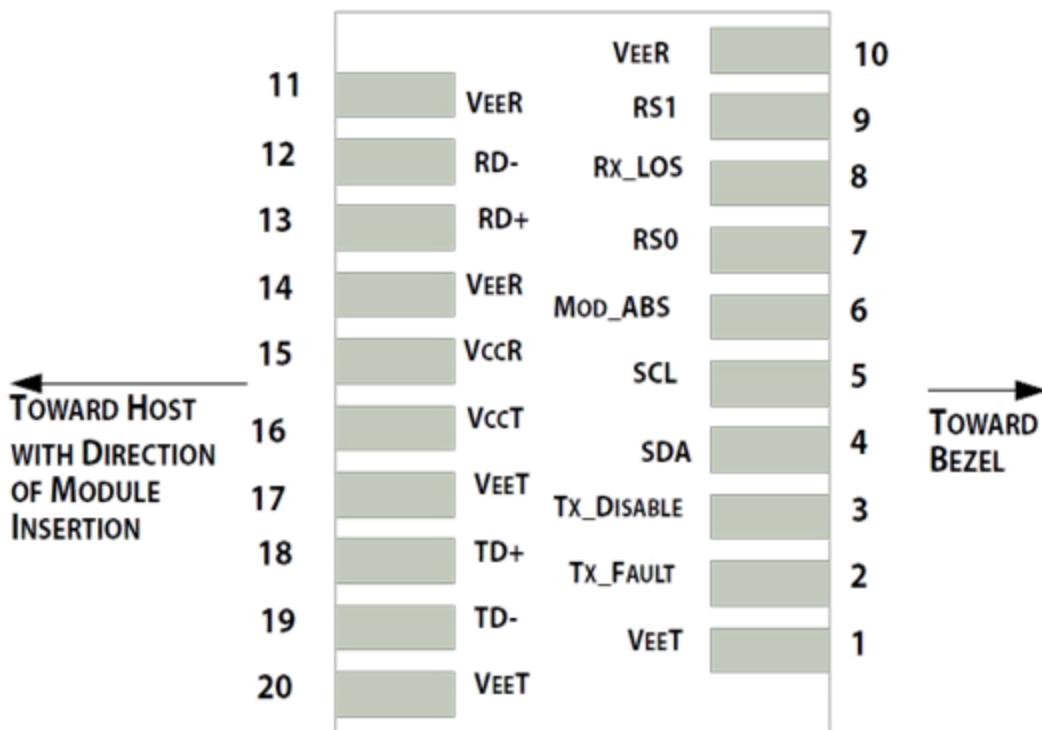
## 8.Optical and Characteristics

| Parameter                         | Symbol                | Min. | Typical | Max.  | Unit  | Notes                   |
|-----------------------------------|-----------------------|------|---------|-------|-------|-------------------------|
| <b>Transmitter</b>                |                       |      |         |       |       |                         |
| Average Output Power              | POUT                  | -8.2 |         | 0.5   | dBm   | 1                       |
| Average Output Power(Laser Off)   | POFF                  |      |         | -30   | dBm   |                         |
| Wavelength                        | $\lambda$             | 1260 |         | 1280  | nm    | EB23X-20D(I)            |
|                                   |                       | 1320 |         | 1340  |       | EB32X-20D(I)            |
| Spectrum Bandwidth @ -20dB        | $\Delta\lambda$       |      |         | 1     | nm    |                         |
| Side mode suppression ratio(SMSR) | SMSR                  | 30   |         |       | dB    |                         |
| Extinction ratio                  | ER                    | 3.5  |         |       | dB    |                         |
| RIN <sub>20</sub> OMA             | RIN                   |      |         | -128  | dB/Hz |                         |
| Optical return loss tolerance     | ORLT                  | 20   |         |       | dB    |                         |
| <b>Receiver</b>                   |                       |      |         |       |       |                         |
| Wavelength                        | $\lambda$             | 1320 |         | 1340  | nm    | EB23X-20D(I)            |
|                                   |                       | 1260 |         | 1280  |       | EB32X-20D(I)            |
| Received Sensitivity              | P <sub>IN</sub>       |      |         | -14.4 | dBm   | BER<1x10 <sup>-12</sup> |
| Optical Power Overload            | P <sub>IN</sub> (SAT) | 0.5  |         |       | dBm   |                         |
| Damage threshold                  |                       |      | 1.5     |       | dBm   | 2                       |
| Receiver Reflectance              | RFL                   |      |         | -12   | dB    |                         |
| Rx_LOS of Signal Assert           | P <sub>A</sub>        | -30  |         |       | dBm   |                         |
| Rx_LOS of Signal De-assert        | P <sub>D</sub>        |      |         | -18   | dBm   |                         |
| Rx_LOS of Signal Hysteresis       | PHy                   | 0.5  |         | 5     | dB    |                         |
| Optical Return Loss Tolerance     | ORLT                  | 20   |         |       | dB    |                         |

Notes:

1.The optical power is launched into SMF.

2.The receiver shall be able to tolerate, without damage, continuous exposure to an optical input signal having this average power level. The receiver does not have to operate correctly at this input power.


## 9.Digital Diagnostics

| Parameter       | Range      | Accuracy | Unit | Calibration |
|-----------------|------------|----------|------|-------------|
| Temperature     | -40 to 85  | ±3       | °C   | Internal    |
| Voltage         | 0 to Vcc   | ±3%      | V    | Internal    |
| Tx Bias Current | 0 to 100   | ±10%     | mA   | Internal    |
| Tx Output Power | -4 to 2    | ±3       | dB   | Internal    |
| Rx Input Power  | -15 to 0.5 | ±3       | dB   | Internal    |

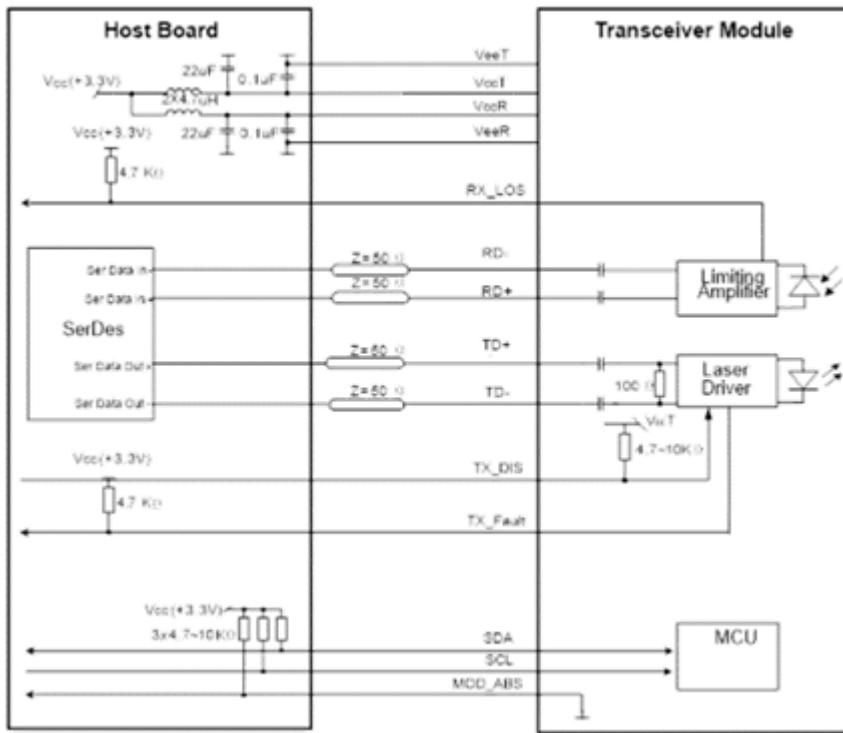
## 10.Communication Interface Timing Characteristics

| Parameter                                    | Symbol                 | Min. | Typical | Max. | Unit | Notes |
|----------------------------------------------|------------------------|------|---------|------|------|-------|
| TX_Disable Assert Time                       | t_off                  |      |         | 100  | us   |       |
| TX_Disable Negate Time                       | t_on                   |      |         | 2    | ms   |       |
| Time to Initialize Include Reset of TX_FAULT | t_int                  |      |         | 300  | ms   |       |
| TX_FAULT from Fault to Assertion             | t_fault                |      |         | 100  | us   |       |
| TX_Disable Time to Start Reset               | t_reset                | 10   |         |      | us   |       |
| Receiver Loss of Signal Assert Time          | T <sub>A</sub> ,RX_LOS |      |         | 100  | us   |       |
| Receiver Loss of Signal Deassert Time        | T <sub>d</sub> ,RX_LOS |      |         | 100  | us   |       |
| Rate-Select Chage Time                       | t_ratesel              |      |         | 10   | us   |       |

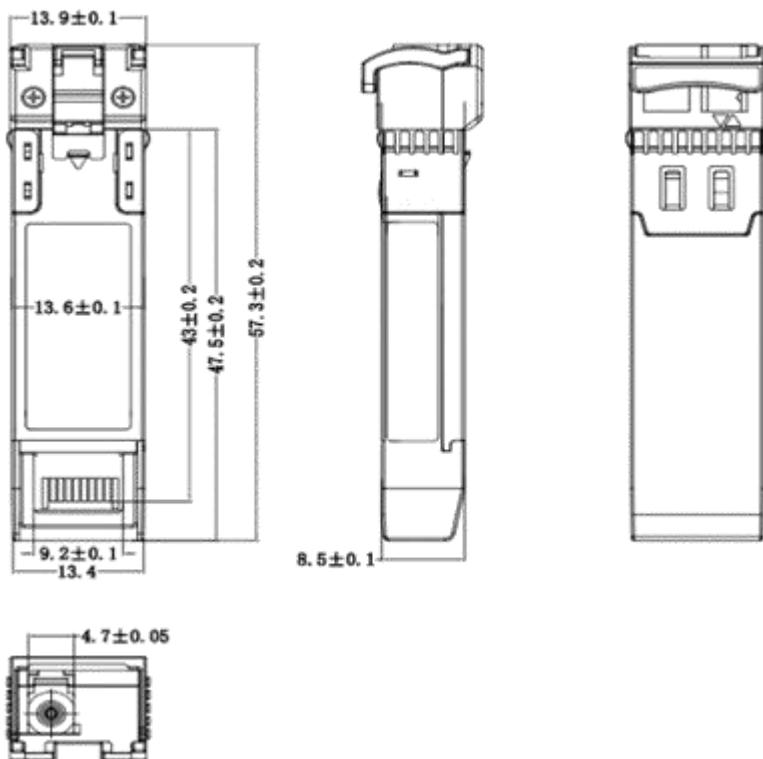
## 11. Pin Diagram



## 12. Pin Definitions


| Pin | Symbol      | Name/Description                                               | Ref. |
|-----|-------------|----------------------------------------------------------------|------|
| 1   | $V_{EET}$   | Transmitter Ground (Common with Receiver Ground)               | 1    |
| 2   | $T_{FAULT}$ | Transmitter Fault.                                             | 2    |
| 3   | $T_{DIS}$   | Transmitter Disable. Laser output disabled on high or open.    | 3    |
| 4   | SDA         | 2-wire Serial Interface Data Line                              | 4    |
| 5   | SCL         | 2-wire Serial Interface Clock Line                             | 4    |
| 6   | MOD_ABS     | Module Absent. Grounded within the module                      | 4    |
| 7   | RS0         | Rate Select 0                                                  | 5    |
| 8   | LOS         | Loss of Signal indication. Logic 0 indicates normal operation. | 6    |
| 9   | RS1         | No connection required                                         | 1    |
| 10  | $V_{EER}$   | Receiver Ground (Common with Transmitter Ground)               | 1    |
| 11  | $V_{EER}$   | Receiver Ground (Common with Transmitter Ground)               | 1    |
| 12  | RD-         | Receiver Inverted DATA out. AC Coupled                         |      |
| 13  | RD+         | Receiver Non-inverted DATA out. AC Coupled                     |      |
| 14  | $V_{EER}$   | Receiver Ground (Common with Transmitter Ground)               | 1    |
| 15  | $V_{CCR}$   | Receiver Power Supply                                          |      |
| 16  | $V_{CCT}$   | Transmitter Power Supply                                       |      |
| 17  | $V_{EET}$   | Transmitter Ground (Common with Receiver Ground)               | 1    |
| 18  | TD+         | Transmitter Non-Inverted DATA in. AC Coupled.                  |      |
| 19  | TD-         | Transmitter Inverted DATA in. AC Coupled.                      |      |
| 20  | $V_{EET}$   | Transmitter Ground (Common with Receiver Ground)               | 1    |

### Notes:


1. Circuit ground is internally isolated from chassis ground.
2.  $T_{FAULT}$  is an open collector/drain output, which should be pulled up with a 4.7k – 10k Ohms resistor on the host board if intended for use. Pull up voltage should be between 2.0V to  $V_{cc} + 0.3V$ . A high output indicates a transmitter fault caused by either the TX bias current or the TX output power exceeding the preset alarm thresholds. A low output indicates normal operation. In the low state, the output is pulled to  $<0.8V$ .
3. Laser output disabled on  $T_{DIS} > 2.0V$  or open, enabled on  $T_{DIS} < 0.8V$ .

4. Should be pulled up with  $4.7\text{k}\Omega$  -  $10\text{k}\Omega$  host board to a voltage between 2.0V and 3.6V. MOD\_ABS pulls line low to indicate module is plugged in.
5. Internally pulled down per SFF-8431 Rev 4.1.
6. LOS is open collector output. It should be pulled up with  $4.7\text{k}\Omega$  -  $10\text{k}\Omega$  on host board to a voltage between 2.0V and 3.6V. Logic 0 indicates normal operation; logic 1 indicates loss of signal.

## 13. Recommended Interface Circuit



## 14. Mechanical Diagram



※ Specifications subject to change without notice